Holistic CoDesign

Arun Rodrigues Scalable Computer Architecture Group Sandia National Labs

R&A: 5294117

View of the Co-Design Problem

Scale.....

Many Cores + Memory

Many Many Nodes

Many Many Many Threads

Multiple Audiences.....

Network
Processor
System

Application writers purchasers designers

system procurement algorithm co-design architecture research language research

present systems future systems

Complexity.....

Multi-Physics Apps Informatics Apps

Communication Libraries
Run-Times
OS Effects

Existing Languages New Languages

Constraints.....

Performance Cost

Power Reliability

Cooling Usability

Risk Size

Hidden Worldwide Impact

"Total power used by servers [in 2005] represented ... an amount comparable to that for color televisions. "
-ESTIMATING TOTAL POWER CONSUMPTION BY SERVERS IN THE U.S. AND THE WORLD, Jonathan G. Koomey

3741e9 KW-Hrs	Total US power consumption
* 3-4%	used by computers (>2% servers, >1% household computer use)
= 112 - 150e9 KW-Hrs	US Computer power consumption
* \$0.1 \$/KW-Hr	Retail cost, US Average 2009
= \$11 - \$15	Billion US\$ in compute power
* 3-5	in 2005 US was roughly 1/3 of servers, by power. This has probably decreased
= \$33 - \$75	Billion US\$ in worldwide computer power
	Yearly GDP of Qatar to Burma

Case Study: Memory is efficient Memory Access is Inefficient

- DRAM cells require < 1 pJ to access
- Current DRAM architectures are not power efficient
- Long distances → high power
- We pay for more than we get at every level
 - Cache: throw away 75-80%
 - DRAM Row: Charge 1024B for each 64B access
 - DIMM: Charge 8-9 chips/access
 - −~800 pJ/byte total
- DRAM design driven by packaging constraints
 - -~50% of DRAM chip cost is packaging, mainly in pins
 - DIMMs use multiple chips with a few data pins to achieve high BW

Design Space Exploration Example

- Design Space for Multiple applications machine
 - Inputs: Memory Channels, Memory Technology, Core type,
 Cache size (144 configurations)
 - -Outputs: Energy, Performance, Cost
- Methodology
 - -Performance models: genericProc, DRAMSim2
 - -Energy Models: DRAMSim2, McPAT
 - -Cost Models: IC Knowledge

-Find Pareto-optimal set for Energy, Performance, and Power for

each application

Parameter	Large Core	Small Core
Instruction Fetch/Decode Width	4	2
Instruction Issue Width	8	4
Instruction Issue	Out of Order	In Order
Instruction Commit Width	8	4
FPUs	2	1
Maximum Instructions 'In-Flight'	128	64
Load Store Queue	64	32
Energy/Instruction (pJ)	3365	1245
Si Area (8 cores, no cache)		
Si Cost (8 cores, Large cache)	\$78.79	\$68.53
Si Cost (8 cores, Small cache)	\$57.05	\$49.51

Design Space Exploration Results

- Latest memory technology not always best (DDR2 beats DDR3) due to latency, cost
- For these apps & inputs, fewer memory channels is better
- No "best" processor depends on tradeoff between cost, performance, energy
- Better understanding of which configurations are best for a given application
- Can be used as basis for application optimization

Chan.	Memory	Core	Cache	Energy	Performance	Cost
1	DDR2 25	Large	Large	1.00	1.000	206.14
1	DDR2 25	Small	Small	1.00	0.464	176.86
1	DDR2 25	Small	Large	1.03	0.532	195.88
1	DDR2 25	Large	Small	1.49	0.902	184.40

Design Space Exploration Results

- Latest memory technology not always best (DDR2 beats DDR3) due to latency, cost
- For these apps & inputs, fewer memory channels is better

 Better understanding of which configurations are best for a given application

Application	Chan.	Memory	Core	Cache	Energy	Performance	Cost
HPCCG	1	DDR2 25	Small	Small	250	510.7	176.86
HPCCG	1	DDR2 25	Small	Large	253	541.6	195.88
HPCCG	1	DDR3 25	Small	Large	263	566.9	220.20
HPCCG	1	DDR3 15	Small	Large	318	585.4	241.48
MD	1	DDR2 25	Large	Large	1504	105.9	206.14
MD	1	DDR2 25	Small	Small	1106	49.7	176.86
MD	1	DDR2 25	Small	Large	1119	50.7	195.88
MD	1	DDR2 25	Large	Small	1579	102.0	184.40
MD	2	DDR2 25	Large	Large	1480	105.4	213.55
MD	2	DDR2 25	Small	Small	1079	49.6	184.27
MD	2	DDR2 25	Small	Large	1093	50.6	203.29
gups	1	DDR2 25	Large	Small	1777	7.2	184.40
gups	1	DDR2 25	Small	Small	1183	6.9	176.86
gups	2	DDR2 25	Small	Small	1114	6.6	184.27
pagerank	1	DDR2 25	Large	Large	751	162.4	206.14
pagerank	1	DDR2 25	Small	Small	667	49.4	176.86
pagerank	1	DDR2 25	Small	Large	565	64.1	195.88
pagerank	1	DDR2 25	Large	Small	867	126.2	184.40
pagerank	2	DDR2 25	Large	Large	748	151.0	213.55

Case Study: Reliability vs. Power Hidden cost of DVFS

- Dynamic voltage/frequency
 Scaling reduces power
- →Reduces temperature
- →Causes thermal cycling
- →Reduces reliability

Need

- Algorithms to balance temperature, lower power, & maintain performance
- -Arch: Sensors and feedback
- -Runtime: Scheduler changes
- –App: Awareness

Case Study: Scratchpads vs. Caches

Power

- -32KB 45nm 4-way cache: 142 pJ/read
- -32KB 45nm SRAM: 24pJ/read

Performance

- -Scratchpads: Predictable, interface well with DMA
- -Caches: Better average performance, requires less application knowledge

Programmability

- -Scratchpads are usable, as demonstrated by the CELL and embedded community
- Scratchpads are difficult to use, as demonstrated by the CELL and embedded comminity

Turf Wars

Institute for Advanced Architectures Sandia National Laboratories and Oak Ridge National Laboratory CSRI Building Albuquerque, NM January 9-10, 2008 Sandia CSRI Workshop on Memory Opportunities for High Performance Computing (MOHPC) by invitation only Sandia National Laboratories

Turf Wars

- January 2008 MOHPC Workshop
- Look at memory opportunities for future HPC systems
- Three groups
 - -Architecture
 - -Runtime (libraries, runtime, & OS)
 - –Applications
- Each came up with recommendations
 - -Each group independently brought up scratchpads
- Exchange & Critique
 - -Generate positive consensus

Turf Wars: Architects View

Scratchpad: While feasible, a key concern is that saving state is difficult and expensive. Additionally,

presents resouce contention issues.

A key question for the application writers is to express why they want a scratch pad.

because it makes naming easier? Is it for bandwidth? latency? guarenteed timing? Also, there are the

standard concerns about portability.

Translation

- •We can make a scratchpad, no problem
- But, the apps people don't really know how to use one
- And, the runtime people won't let them have it anyway

Turf Wars: Runtime View

The use of "local" memory (scratch pads, etc.) shows significant promise, but tends to also be performed in a non-portable fashion. Additionally, there tend to be few mechanisms for coping with the expansion of the memory hierarchy.

Translation

- We can deal with a scratchpad
- But, the apps people don't like 'em
- And, the architects won't give one to us anyway

Turf Wars: Application View

highly desirable, however, historically it has proven very difficult to generate a robust, portable, non-ephemeral API to support these features.

Translation

- We love scratchpads
- But, the runtime people won't let us access them
- And, the architects won't give one to us anyway

What is needed

- Simulation/Emulation environments
 - -Parallel, Scalable, & Multi-scale
 - -Holistic
 - -Open, Trusted, and Accepted
- Methodologies
 - -Validation
 - -Multi-scale mix-n-match

Multi-Scale

- Goal: Enable tradeoffs between accuracy, flexibility, and simulation speed
 - No single "right" way to simulate
 - Support multiple audiences
- High- & Low-level interfaces
 - Allows multiple input types
 - Allows multiple input sources
 - Traces, stochastic, statemachines, execution...

	High-Level	Low-Level
Detail	Message	Instruction
Fundamental Objects	Message, Compute block, Process	Instruction, Thread
Static Generation	MPI Traces, MA Traces	Instruction Trace
Dynamic Generation	State Machine	Execution

- Design space includes much more than simple performance
- Create common interface to multiple technology libraries
 - -Power/Energy
 - -Area/Timing estimation
- Make it easier for components to model technology parameters

SST Simulation Project Overview

Goals

- Become the standard architectural simulation framework for HPC
- Be able to evaluate future systems on DOE workloads
- Use supercomputers to design supercomputers

Technical Approach

- Parallel
 - Parallel Discrete Event core with conservative optimization over MPI
- Holistic
 - Integrated Tech. Models for power
 - McPAT, Sim-Panalyzer
- Multiscale
 - •Detailed and simple models for processor, network, and memory
- Open
 - Open Core, non viral, modular

Status

Current Release (2.1) at

code.google.com/p/sst-simulator/

 Includes parallel simulation core, configuration, power models, basic network and processor models, and interface to detailed memory model

Consortium

- "Best of Breed" simulation suite
- Combine Lab, academic, & industry

Open Simulator Framework

Simulator Core will provide...

- -Power, Area, Cost modeling
- -Checkpointing
- -Configuration
- -Parallel Component-Based Discrete Event Simulation
- Components
 - Ships with basic set of open components
 - -Industry can plug in their own models
 - Under no obligation to share
- Open Source (BSD-like) license
- SVN hosted on Google Code

What is needed

- Validation Methodologies
 - -Where are our error bars?
 - -How much error can we live with?
 - –What is the standard for validation of things which do not exist?
- Multi-scale Methodologies
 - –Can we mix and match simulation models of different scale?
 - -When we mix a high-fidelity and low-fidelity model how is the error effected?

The New Project Polygon

- "Fast Cheap or Good" no longer enough
- New Factors
 - -Resilience
 - -Risk
 - -Programmability
 - -Power
 - –Energy
 - -Cost (purchase vs. TCO)
 - -Commercial adoption
 - -"Social" Issues
- Community needs tools!
 - -Simulation
 - -methodologies

